
Lecture 11
Operating Systems

CS101 Introduction to Computing

Focus of the last lecture: computer SW

1. We found out about the role SW plays in a

computing environment

2. We learned to distinguish between SW belonging to

the system & application categories

3. Also discussed the different types of SW licenses:

1. Proprietary

2. Free

3. Open source

4. Shareware

5. Trialware

Learning Goals for Today

• The role of the operating system in a

computing environment

• The various functions that an operating

system performs

• The main components of an operating system

• Various types of operating systems

Why Have OSes?

1. User/programmer convenience

2. Greater resource utilization

The Role of An OS
• The 1st program that runs when a typical

computer is turned ON, and the last one to

finish running when the computer is turned OFF

• It manages the HW and SW resources of the

computer system, often invisibly. These include

the processor, memory, disk drives, etc.

• It provides a simple, consistent way for

applications to interact with the HW without

having to know all the details of the HW

Advantage for App. Developers

• App developers do not need to know much
about the HW while they are developing their
app

• They just develop with a particular OS in mind.
If the OS runs on many types of computers
having different HW configurations, so will the
app – without making any HW-specific
modifications in the app SW. The OS hides the
HW differences from the app

Are OS’es Essential?
• No. If a computer has been designed for

limited functionality (e.g. it runs just a single
program all the time as in a automatic clothes
washing machine), it does not require a
traditional OS

• In limited-functionality computers, an OS just
adds to the overhead unnecessarily, which
impedes the computer’s performance

• In these situations, the required parts of the OS
are integrated into the the only program that is
going to run

In the beginning …
• A single user ran a single program ran on a single

computer – there was no need for an OS

• Then came computer operators who ran multiple

programs for multiple users one after the other – still,

no need for an OS

• Later computers became powerful, & became able to

run multiple programs, simultaneously. That’s when

the need for OS’es arose for:

– Managing the resources of the computers efficiently

– Making use of computers convenient for users/programmers

Core Tasks of an OS

1. Processor management

2. Memory management

3. Device management

4. Storage management

5. Application Interface

6. User Interface

Processor Management

• Various programs compete for the attention of

the uP for their own purposes

• The OS plays the role of the honest referee,

making sure that each app gets the necessary

attention required for its proper execution

• It tries to optimally manages the limited

processing capacity of the uP to the greatest

good of all the users & apps

Memory Management

• Straight forward for a single-user, single
tasking

• Each app must have enough private memory
in which to execute

• App can neither run into the private memory
space of another app, nor be run into by
another app

• Different types of memory (e.g. main, cache)
in the system must be used properly, so that
each app can run most effectively

Storage Management
• The OS manages storage through one of its

sub-modules, the File Manager

• A file system is a collection of directories,

subdirectories, and files organized in a logical

order

• File manager maintains an index of the

filenames & where they are located on the disk

• File manager make it easy to find the required

file in a logical and timely fashion

Device Management

• Applications talk to devices through the OS and

OS talks to and manages devices through

Device Drivers

• Example: When we print to a laser printer, we

do not need to know its details. All we do is to

tell the printer device driver about what needs

to be printed and it takes care of the details

Application Interface

• App developers do not need to know much
about the HW, especially the uP, while they are
developing their app

• The OS provides all apps with a straight-
forward and consistent interface to the HW

• Example: An app uses the OS to store data on
the disk drive. For that, the app does not need
to know about the exact physical characteristics
of that drive; it just tells the OS to do that
through the app interface, and the OS takes
cares of all the details of the task

User Interface
• Users communicate with the computer using a

consistent user interface provided by the OS

• This UI can be a command-line interface in which a

user types in the commands. Example:

copy a:/file1.html c:/file1.html

• Or, it can be a graphical UI, where Windows, Icons,

Menus, and a Pointing device (such as a mouse) is

used to receive and display information. Example:

With the help of the mouse, drag file1.html

from drive a to drive c

OS Components

Kernel

Command

Interpreter

(Shell)

File

Manager

Device

Manager

GUI

Loader

Loader:
When you turn on a computer, first of all, Loader is the component of OS which

comes into action. It checks is the hardware ok? Then it searches the main part

of OS called as Kernel. As its name implies it loads the Kernel into memory.

Kernel

• The heart of the OS

• Responsible for all the essential operations like

basic house keeping, task scheduling, etc.

Also contains low-level HW interfaces

• Size important, as it is memory-resident

Types of OS’es

Classification w.r.t. the type of computers they

run on and the type of applications they support

– Real-Time Operating System (RTOS)

– Single-User, Single Task

– Single-User, Multi-Tasking

– Multi-User

RTOS (1)
• Used to run computers embedded in

machinery, robots, scientific instruments and

industrial systems

• Typically, it has little user interaction capability,

and no end-user utilities, since the system will

be a "sealed box" when delivered for use

• Examples: Wind River, QNX, Real-time Linux,

Real-time Windows NT

RTOS (2)
• An important part of an RTOS is managing the

resources of the computer so that a particular

operation executes in precisely the same

amount of time every time it occurs

• In a complex machine, having a part move

more quickly just because system resources

are available may be just as catastrophic as

having it not move at all because the system

was busy

Single-User, Single Task

• OS’es designed to manage the computer so

that one user can effectively do one thing at a

time

• The Palm OS used in many palmtop computers

(PDA’s) is an example of a single-user, single-

task OS

Single-User, Multi-Tasking

• Most popular OS

• Used by most all PC’s and Laptops

• Examples: Windows, Mac OS, Linux

• Lets a single user interact with several

programs, simultaneously

Multi-User
• A multi-user OS allows many users to take

advantage of the computer's resources,

simultaneously

• The OS must make sure that the requirements

of the various users are balanced, and that the

programs they are using each have sufficient

and separate resources so that a problem with

one user doesn't affect any of the other users

• Examples: Linux, Unix, VMS and mainframe

OS’es, such as MVS

Another Way of Classifying

Uni-processor OS’es

Designed to schedule tasks on a single uP only

Example: DOS

Multi-processor OS’es

Can control computers having multiple uPs, at

times 1000’s of them

Example: Current versions of Windows, Mac

OS, Linux, Solaris

How many different OS’es are there?

• 100’s

• OS’es from the Windows family dominate the

desktops and run on millions of PC’s

• OS’es from the Unix family (Unix, Linux, etc)

are quite popular on servers

• There are hundreds more. Some designed for

mainframes only. Some for embedded

applications only.

Comparing Popular OS’es

OS HW Stability Cost Apps. Support Security Popularity

Windows

(GUI)
PC Poor $300 Huge no. OK Poor Amazing

Mac OS

(Shell/GUI)
Mac Good $60 Many OK Good Low

Linux

(Shell/GUI)
Many Good Low Many Variable Good Low

Unix

(Shell/GUI)
Many Excellent High Many Expensive Excellent Servers

What have we learnt today?

• The role of the OS in a computing

environment

• The various functions that an OS performs

• The main components of an OS

• Various types of OS’es

Next Lecture: Application SW

We’ll learn about application SW, i.e. programs
that interact directly with the user for the
performance of a certain type of work

We’ll try to become familiar with various SW
used in the following application areas:

– Scientific/engineering/graphics

– Business

– Productivity

– Entertainment

– Educational

	Slide 1: Lecture 11
	Slide 2: Focus of the last lecture: computer SW
	Slide 3: Learning Goals for Today
	Slide 4: Why Have OSes?
	Slide 5: The Role of An OS
	Slide 6: Advantage for App. Developers
	Slide 7: Are OS’es Essential?
	Slide 8: In the beginning …
	Slide 9: Core Tasks of an OS
	Slide 10: Processor Management
	Slide 11: Memory Management
	Slide 12: Storage Management
	Slide 13: Device Management
	Slide 14: Application Interface
	Slide 15: User Interface
	Slide 16: OS Components
	Slide 17
	Slide 18: Kernel
	Slide 19: Types of OS’es
	Slide 20: RTOS (1)
	Slide 21: RTOS (2)
	Slide 22: Single-User, Single Task
	Slide 23: Single-User, Multi-Tasking
	Slide 24: Multi-User
	Slide 25: Another Way of Classifying
	Slide 26: How many different OS’es are there?
	Slide 27: Comparing Popular OS’es
	Slide 28: What have we learnt today?
	Slide 29: Next Lecture: Application SW

